19 research outputs found

    The Multiple Identities of a Mathematics Professor Mom

    Get PDF
    In this essay, i dive into the multiple identities of a Mathematics Professor Mom and how we interchange those identities as we work to achieve harmony (not balance!) in our lives

    Opportunity and Access to Informal STEM Learning Environments

    Get PDF
    The University of Kentucky (UK) STEM Experiences is a collaboration amongst the UK Colleges of Education, Engineering, and Arts & Sciences. Our goal is to expose students to a variety positive learning experiences and career options in the STEM fields. Additionally, the summer experiences

    Cultivating an Online Network for Mentoring Preservice and In-Service Teachers

    Get PDF
    This report details the work of two initial teacher certification programs at a major university in Kentucky that are implementing two innovative strategies for preservice teachers to network, build community, and grow in their practice. The utilization of Slack, a free online communication platform, has proven successful in getting preservice teachers to share ideas, pose and respond to professional questions, and program information dissemination. The use of a NIC (Networked Improvement Community) is a grant funded endeavor that brought together preservice teachers, their cooperating teachers, and university faculty members to create a professional learning community where a problem of practice was identified and PDSA (plan, do, study, act) cycles were utilized to improve classroom practices

    Equity-Oriented Conceptual Framework for K-12 STEM Literacy

    Get PDF
    We introduce a conceptual framework of K-12 STEM literacy that rightfully and intentionally positions each and every student, particularly minoritized groups, as belonging in STEM. In order to conceptualize the equity-based framework of STEM literacy, we conducted a systematic review of literature related to STEM literacy, which includes empirical studies that contribute to STEM literacy. The literature on the siloed literacies within STEM (i.e., science, technology, engineering, and mathematics literacy) also contributed to formulate the necessity of and what it means to develop STEM literacy. The Equity-Oriented STEM Literacy Framework illuminates the complexities of disrupting the status quo and rightfully transforming integrated STEM education in ways that provide equitable opportunities and access to all learners. The Equity-Oriented STEM Literacy Framework is a research-based, equity and access-focused framework that will guide research, inform practice, and provide a lens for the field that will ensure each and every student, especially minoritized students, develop, and are developing STEM literacy

    Students\u27 Perceptions of STEM Learning After Participating in a Summer Informal Learning Experience

    Get PDF
    Background: Informal learning environments increase students’ interest in STEM (e.g., Mohr‐Schroeder et al. School Sci Math 114: 291–301, 2014) and increase the chances a student will pursue a STEM career (Kitchen et al. Sci Educ 102: 529–547, 2018). The purpose of this study was to examine the impact of an informal STEM summer learning experience on student participants, to gain in-depth perspectives about how they felt this experience prepared them for their in-school mathematics and science classes as well as how it influenced their perception of STEM learning. Students’ attitudes and perceptions toward STEM are affected by their motivation, experience, and self-efficacy (Brown et al. J STEM Educ Innov Res 17: 27, 2016). The academic and social experiences students’ have are also important. Traditionally, formal learning is taught in a solitary form (Martin Science Education 88: S71–S82, 2004), while, informal learning is brimming with chances to connect and intermingle with peers (Denson et al. J STEM Educ: Innovations and Research 16: 11, 2015). Results: Informal learning environments increase students’ interest in STEM (e.g., Mohr‐Schroeder et al. School Sci Math 114: 291–301, 2014) and increase the chances a student will pursue a STEM career (Kitchen et al. Sci Educ 102: 529–547, 2018). The purpose of this study was to examine the impact of an informal STEM summer learning experience on student participants, to gain in-depth perspectives about how they felt this experience prepared them for their in-school mathematics and science classes as well as how it influenced their perception of STEM learning. Students’ attitudes and perceptions toward STEM are affected by their motivation, experience, and self-efficacy (Brown et al. J STEM Educ Innov Res 17: 27, 2016). The academic and social experiences students’ have are also important. Traditionally, formal learning is taught in a solitary form (Martin Science Education 88: S71–S82, 2004), while, informal learning is brimming with chances to connect and intermingle with peers (Denson et al. J STEM Educ: Innovations and Research 16: 11, 2015). Conclusions: By using authentic STEM workplaces, the STEM summer learning experience fostered a learning environment that extended and deepened STEM content learning while providing opportunity and access to content, settings, and materials that most middle level students otherwise would not have access to. Students also acknowledged the access they received to hands-on activities in authentic STEM settings and the opportunities they received to interact with STEM professionals were important components of the summer informal learning experience

    STEM through Authentic Research and Training Program (START) for Underrepresented Communities: Adapting to the COVID-19 Pandemic

    Get PDF
    The STEM Through Authentic Research and Training (START) Program is a new program integrating academic, social, and professional experiences, in the theme of exomedicine, to build a pipeline into college for first generation and traditionally underrepresented students by providing year-round authentic opportunities and professional development for high school students and teachers. In response to the COVID-19 pandemic, the START Program has worked with the local Fayette County public school and community partners to provide content to over 300 students through: virtual laboratory tours with community partner Space Tango, meet a scientist discussions, and online near-peer student demonstrations aimed at making the practice of STEM disciplines approachable. Furthermore, the START Program has partnered with Higher Orbits to provide at-home, space-themed learning kits for students to develop teamwork, communication, and STEM principles while engaging in online content with teachers, professionals, and astronauts. Finally, the START Program has moved its training platforms online, including receiving College Reading and Learning Association (CRLA) Peer Educator accreditation for our near-peer mentoring and coaching training. As a result, the START Program is better positioned to address this critical need in STEM education, while reaching more students in the community than possible with face-to-face interactions alone

    An Exploration of Communities of Practice in the STEM Teacher Context: What Predicts Ties of Retention?

    Get PDF
    The STEM teacher workforce in the United States has faced a host of pressing challenges, including teacher shortages, pervasive job dissatisfaction, and high turnover, problems largely attributable to working conditions within schools and districts. These problems have been exacerbated in high-needs districts with fewer resources and more students from low-income communities. Since social network research has shown that workplace relationships are vital for retention, this study investigates the demographic and relational antecedents to what we dub ties of retention. We explore how demographic and relational properties affect the likelihood that teachers have “retention-friendly” networks, characterized by connections important for retention. Our analysis of data from a sample of 120 STEM teachers across five geographic regions identifies key demographics (i.e., site, gender, career changer, and prior teaching experience) and relational properties (network size, positive affect, and perceptions of bridging) associated with ties of retention. We discuss the implications of our findings for the STEM teacher workforce and for teacher education programs

    Science and Mathematics Teacher Communities of Practice: Social Influences on Discipline-Based Identity and Self-Efficacy Beliefs

    Get PDF
    Background Teacher communities of practice, identity, and self-efficacy have been proposed to influence positive teacher outcomes in retention, suggesting all three may be related constructs. Qualitative studies of communities of practice can be difficult to empirically link to identity and self-efficacy in larger samples. In this study, we operationalized teacher communities of practice as specific networks related to teaching content and/or pedagogy. This scalable approach allowed us to quantitatively describe communities of practice and explore statistical relationships with other teacher characteristics. We asked whether these community of practice networks were related to identity and self-efficacy, similar to other conceptualizations of communities of practice. Results We analyzed survey data from 165 in-service K-12 teachers prepared in science or mathematics at 5 university sites across the USA. Descriptive statistics and exploratory factor analyses indicated that math teachers consistently reported smaller communities of practice and lower identity and self-efficacy scores. Correlations revealed that communities of practice are more strongly and positively related to identity than self-efficacy. Conclusion We demonstrate that teacher communities of practice can be described as networks. These community of practice networks are correlated with teacher identity and self-efficacy, similar to published qualitative descriptions of communities of practice. Community of practice networks are therefore a useful research tool for evaluating teacher characteristics such as discipline, identity, self-efficacy, and other possible outcomes (e.g., retention). These findings suggest that teacher educators aiming to foster strong teacher identities could develop pre-service experiences within an explicit, energizing community of practice

    Teaching Mathematics with Technology: TPACK and Effective Teaching Practices

    Get PDF
    This paper examines how 17 secondary mathematics teacher candidates (TCs) in four university teacher preparation programs implemented technology in their classrooms to teach for conceptual understanding in online, hybrid, and face to face classes during COVID-19. Using the Professional Development: Research, Implementation, and Evaluation (PrimeD) framework, TCs, classroom mentor teachers, field experience supervisors, and university faculty formed a Networked Improvement Community (NIC) to discuss a commonly agreed upon problem of practice and a change idea to implement in the classroom. Through Plan-Do-Study-Act cycles, participants documented their improvement efforts and refinements to the change idea and then reported back to the NIC at the subsequent monthly meeting. The Technology Pedagogical Content Knowledge framework (TPACK) and the TPACK levels rubric were used to examine how teacher candidates implemented technology for Mathematics conceptual understanding. The Mathematics Classroom Observation Protocol for Practices (MCOP2) was used to further examine how effective mathematics teaching practices (e.g., student engagement) were implemented by TCs. MCOP2 results indicated that TCs increased their use of effective mathematics teaching practices. However, growth in TPACK was not significant. A relationship between TPACK and MCOP2 was not evident, indicating a potential need for explicit focus on using technology for mathematics conceptual understanding

    A Multi-Institutional Approach to Delivering Shared Curricula for Developing a Next-Generation Energy Workforce

    Get PDF
    In this paper, we consider collaborative power systems education through the FEEDER consortium. To increase students\u27 access to power engineering educational content, the consortium of seven universities was formed. A framework is presented to characterize different collaborative education activities among the universities. Three of these approaches of collaborative educational activities are presented and discussed. These include 1) cross-institutional blended courses (“MS-MD”); 2) cross-institutional distance courses (“SS-MD”); and 3) single-site special experiential courses and concentrated on-site programs available to students across consortium institutions (“MS-SD”). This paper presents the advantages and disadvantages of each approach
    corecore